Yes – a Kiwi might go to Mars, but I still wish it was Justin Bieber

A New Zealander’s reached the short-list of 100 possible candidates for the one-way Mars One mission proposed for 2025-26 by Dutch entrepreneur Bas Lansdorp, co-founder of the project.

Personally I’d have preferred they despatched Justin Bieber and left it at that. But the presence of a Kiwi isn’t bad given that the original long-list ran to 202,586 individuals.

Conceptual artwork by Pat Rawlings of a Mars mission rendezvous from 1995. NASA, public domain, via Wikipedia.

Conceptual artwork by Pat Rawlings of a Mars mission rendezvous from 1995. NASA, public domain, via Wikipedia.

Still, I can’t quite believe the plan. Settlers will be lobbed to Mars in batches of four, inside modified Space-X Dragon capsules. They’ll land, build a habitat based on inflatable modules and several Dragons, and remain there for the rest of their lives. Kind of like Robinson Crusoe, but with all of it beamed back to us for our – well, I hesitate to use the word under these circumstance. Entertainment.

I doubt that the show will run for many seasons. The development timing for the mission seems optimistic – a point I am not alone in observing. There have been a wide range of practical objections raised by engineers at MIT. But apart from that, nobody’s been to Mars before. Sure, we’ve despatched over 50 robots, 7 of which are still operational. But that doesn’t reduce the challenges involved in keeping humans alive in a hostile environment for their natural lives, and I figure from the Apollo experience that there’ll be curve balls along the way.

Those challenges will begin as soon as the colonists are cruising to Mars, a 256 day journey jammed into a 10-cubic metre metal can along – eventually – with 256 days worth of their wastes. Think about it. Popeye lived in a garbage can. The first Mars colonists? Well, they’re going to live in a commode. Hazards (apart from launch-day waste bags bursting on Day 255) include staying fit in micro-gravity and radiation flux. That last is the killer. The trans-Mars radiation environment was measured by the Curiosity rover, en route, and turned out to be – on that trip anyway – 300 millisieverts, the equivalent of 15 years’ worth of the exposure allowed to nuclear power plant workers. A typical airport X-ray scan, for comparison, delivers 0.25 millisieverts.

I suppose the heightened risk of cancer isn’t really an issue, given their life expectancy on Mars (68 days, according to MIT). Though if the sun flares – well, that’ll be too bad. (‘My goodness, what a lovely blue glow. Nice tan.’)

A large solar flare observed on 8 September 2010 by NASA's Solar Dynamics Observatory. Public Domain, NASA.

A large solar flare observed on 8 September 2010 by NASA’s Solar Dynamics Observatory. Public Domain, NASA.

Unfortunately the radiation problem continues on the surface of Mars. The planet lacks a magnetic field like Earth’s and its atmosphere is thin, meaning radiation is a threat even after you’ve landed. The answer is to bury yourself under Martian dirt, but Space One’s plans don’t seem to include that. There also a possible problem – which we’ll look at next time – with the nature of that dirt.

Whether the intrepid colonists will get away is entirely another matter. Apart from the hilariously optimistic timetable, the project relies on a modified version of Space-X’s Dragon, which has yet to be human-rated. And then there’s funding, which I understand will come from media coverage. But I suspect the likely barrier will be regulatory. These people will be flying inexorably and certainly to their deaths, and odds are on it will be before the natural end of their lives. Will the nation that hosts the launch permit that?

Still, let’s suppose there are no legislative barriers. And let’s say the colonists get to Mars without their hair falling out or the waste bags bursting and filling the cabin with – well, let’s not go there. Let’s say they land safely. Suddenly they’re on Mars. Forever. What now? And what about those curve-balls?

More next week.

Copyright © Matthew Wright 2015

My flirtation with the ultimate golden age sci-fi gadget

I re-discovered my slide rule a while back, the one I used in school maths lessons, way back when. I didn’t know just how utterly classic such things were, even then.

Aha - now I can stop the Plorg Monsters from taking Earth's water!

Aha – now I can stop the Plorg Monsters from taking Earth’s water! Maybe with an app on my Surface Pro 3, but surely via my old slide rule!

These things mostly worked because of a quirk of mathematics – the logarithm, which means you can add logs, as a linear measure, to multiply. And there’s more. In the photo, I’ve set my slip-stick to do the pi times table – and believe me, it’ll calculate that to about two decimal places (which is OK for a quick estimate) faster than you can punch the same thing into a calculator. All you have to do is slide the centre piece to the right point and look along the ruler. Cool.

Time was when no self-respecting space adventurer set off without one of these. They were a staple in Robert Heinlein’s sci-fi, among others. With them you could not only defeat the squidgy aliens who were trying to make off with all Earth’s water – you could go on to conquer the entire universe.

And, just to nail how fast the world changes, NASA actually did conquer the Moon with slide rules. Apollo-era engineers carried them the same way we carry phones.

My slide rule’s linear, but they were also available as circular calculators – disks – often optimised for other functions such as electrical calculation. My father had one.

I have to admit that I’m using computers to do the maths for a hard sci-fi story I’m writing just now for an upcoming anthology. But still, the slide rule’s there as a standby. And the idea of it – well, I find that pretty inspiring. Do you?

Copyright © Matthew Wright 2015

Buy print edition from Fishpond

Buy from Fishpond

Click to buy from Fishpond.

Buy from Fishpond.

Click to buy from Fishpond

Buy from Fishpond

Searching for that elusive exo-Earth

In the nearly 20 years since Michel Mayer and Didier Queloz confirmed the first known exoplanet around 51 Pegasi, the number of known exoplanets has risen to over 1860 – and there are more to come. The Kepler space telescope, before being hobbled by mechanical failure, created a massive database of planet candidates orbiting the 150,000 stars it looked at – some 4,175 in fact – which are still being checked. Eight new planets were confirmed just last week.

We can be sure there are a lot more out there. Kepler scanned just 0.28 percent of the sky in the direction of Draco, out to 3000 light years. In that patch, it could only detect planets whose orbits cross the disk of their star from our viewpoint. Other planetary systems, tilted at different angles, aren’t detectable by the transit method. But they will be there. And now the hot question – how many planets are like Earth?

Simulated Exo-Earth. A picture I made. Apart from the fractal artefacts, does anybody notice what's wrong with it?

Exo-Earth. A picture I made. Apart from fractal artefacts, does anybody notice what’s wrong?

Astronomers have found a few planets Earth-sized and below – including two of last week’s confirmations. Some are in the ‘Goldilocks’ orbit where the star’s warmth would allow liquid water to flow on a planetary surface. Though bear in mind that an observer using Kepler to scan our solar system would classify Venus as “Earth-sized” in the habitable zone. The problem is that transit-detection gives us diameter and orbital period, hence mass and density of the planet (and of its parent star). But it doesn’t give visual data – we can’t do spectroscopy on the atmosphere, for instance, though that’s possible with other techniques, and some data has been fielded about planetary atmospheres.

However, it’s only a matter of time (and money) before instruments are able to pick up more data from subtle fluctuations of stellar light. A photon here, a photon there – literally. From that, we’ll learn about planetary colour, atmospheric composition (via changes to starlight passing through it). Maybe we’ll learn whether any have large moons, if the orbit of that moon is in line with the star. Though I wonder. We’re looking for another Earth – but who says our world has been replicated?

Neptune. A picture I made with my trusty Celestia installation (cool, free science software).

Neptune. A picture I made with my trusty Celestia installation (cool, free science software).

One of the types we’ve found is the ‘hot Neptune’ – a world maybe twice the diameter of Earth with eight or more times the mass. About 19.3 percent of exoplanets found so far fall into this category, as opposed to 5.3 percent of Earth-sized worlds. They also orbit relatively closely to their stars. This is largely a function of technical limits – we can detect the bigger worlds more easily, and picking up the orbits of worlds that are distant from their stars requires years-long observations. So these proportions will likely change. But for the moment that’s where the data points.

Close to its primary, such worlds could be water planets, rather than the ice giants we have in our solar system. Maybe these ‘exo-Neptunes’ define ‘normal’. Or maybe every world is unique – product of many variables, obeying the same laws of physics but emerging in variations defined by subtle differences in composition, size, ambient temperature, and so on. Check out Jupiter’s biggest moons – all different, all formed in the same place at the same time.

The realities of physics mean we won’t travel to these exo-worlds any time soon. Or later (and yes, I know about the ‘Alcubierre drive’). But it’s fun to speculate…and I have a question. Suppose we found another Earth and arrived, en masse. Do you think we’d ruin it, the way we’re making a good job of ruining the Earth we’ve got? Just wondering…

Copyright © Matthew Wright 2015

Click to buy from Fishpond.

Buy from Fishpond.

Click to buy from Fishpond

Buy from Fishpond

Click to buy e-book from Amazon

Buy e-book from Amazon

Orion’s first flight is good news – but can NASA sell the space dream?

I checked the latest space news on Saturday with bated breath. NASA had a lot riding on this week’s Orion flight. In a climate of limited budgets and little real public enthusiasm, failure wasn’t an option.

Artists' impression of the Orion EFT-1 mission. NASA, public domain.

Artists’ impression of the Orion EFT-1 mission. NASA, public domain.

The problem is where Orion goes next. By Cold War standards ambitions are vague; a couple more test flights, fly around the Moon or go to a captured asteroid by 2021-25, and then on to Mars some stage in the 2030s….eventually. Maybe. Both these aims and the time-frame stand at odds with Apollo-era determination when goals, budgets, public support and intent all meshed. I wouldn’t be surprised if Orion flounders before it gets much further, purely because of that mushiness vs public apathy vs budgetary realities.

Which is a pity, because it’s a good spacecraft and the flight on Saturday demonstrated – after two tragic ‘private enterprise’ failures – that the Apollo-era NASA ‘business model’, which rested on private contractors and commercial suppliers – still works. Rocket science is just that – it’s risky, difficult, and stretches materials science. Cutting corners, private-enterprise style, may save money. But when it comes to spaceflight there’s no room for error.

EFT-1 Orion being prepared to flight atop a Delta 4 Heavy. NASA, public domain.

EFT-1 Orion being prepared to flight atop a Delta 4 Heavy. NASA, public domain.

The other point is that Orion is not – as some critics suggest – a retrograde step. Sure, Orion looks like a 1960s capsule. But it isn’t – it’s stuffed with twenty-first century tech. Don’t be fooled by its 2002-era PowerPC 750FX-based computers, either; space computer hardware has to be well proven and rugged. If it fails at the wrong moment, you die. Armstrong and Aldrin’s Raytheon AGC fly-by-wire computer partly crashed when they were descending to the Moon in 1969. But not totally – and it was safe to land.

What’s driving the illusion of Orion being ‘retrograde’, I think, is that we’re conditioned to imagine space ‘progress’ as ‘advance’ from one-shot cone-shaped ‘capsules’, to multi-use winged spaceplanes designed to fly, literally, into space. They were the future, way back when. Except they weren’t. The problem is that the laws of physics don’t co-operate. Mass is everything in spaceflight – dry mass to fuel mass ratio, in particular. The Shuttle orbiter had to lug a LOT of mass into orbit that was useless up there – wings, tail, landing gear, hydraulics, heat shield and so forth. Dead loss for your fuel budget. And that’s apart from the risks of strapping the spaceplane to the side of its booster.

Orion recovered off California after the flight, 4 December 2014. NASA, public domain.

Orion recovered off California after the flight, 4 December 2014. NASA, public domain.

For anything beyond low-earth orbit, you need a vehicle that lacks the encumbrance of aircraft-style flight hardware – but which can still make an aero-braked descent to Earth, because it’s not practical to carry the fuel you need to slow down by rocket. Ideally the spacecraft also has to generate a certain amount of aerodynamic lift, both to steer the descent and to reduce deceleration forces on the crew. The resulting shape is specific, and Apollo, Orion, the Boeing CST-100 and Chelomei’s 1970s-Soviet era VA re-entry capsule all use virtually the same truncated cone design. McDonnell Douglas’ Gemini, Space X’s Dragon, the Soyuz and Shenzhou offer only minor variations on the theme.

Apollo vs Orion. NASA, public domain.

Apollo vs Orion. NASA, public domain.

Orion, in short, is a recognition of the physics of rocket-propelled spaceflight. Budgets permitting, the 2020s should bring a flurry of similar spacecraft into low-earth orbit – Space X’s Dragon and Boeing’s CST-100, servicing the space station. The Russians (hopefully) will be in on the mix with their late-generation Soyuz. And there’s the Chinese manned programme.

Cut-away of the modified Apollo/SIVB 'wet lab' configuration for the 1973-74 Venus flyby. NASA, public domain, via Wikipedia.

Cut-away of the modified Apollo/SIVB for the 1973-74 Venus flyby. NASA, public domain.

Beyond that, Orion will be on hand to fly to the Moon, a nearby asteroid, and eventually Mars. Orion will not, of course, fly by itself on long-duration missions. It’s good for 21 days in space – enough for an Apollo-type jaunt around the Moon – but for longer flights it’ll be docked to a habitat module. This mirrors the 1968 plan to send astronauts on a Venus flyby using Apollo hardware – the crew would have spent most of the 396 day flight inside a modified S-IVB stage, using the CSM only for the launch and re-entry phases.

Orion with propulsion and habitat module for an asteroid mission. NASA, public domain.

Artist’s impression of Orion with propulsion and small habitat module for an asteroid mission. NASA, public domain.

Orion, similarly, will be docked with various habitats and propulsion stages depending on mission. The whole stack will become the ‘interplanetary spacecraft’. But all this assumes budget and enthusiasm, among other things (‘other things’ includes finding ways of dealing with radiation, of which more some other time). Bottom line is that state-run space efforts can be killed with the stroke of a political pen.

Perhaps the biggest challenge, then, will be re-selling the excitement of the space dream to a wider public, both in the US and beyond. And this, I think, is where the focus needs to be for the foreseeable future. Space flight is, after all, one of the greatest ventures in the history of the world.

Copyright © Matthew Wright 2014

The really annoying thing about time travel stories

I’ve always wanted to invent a time machine so I could whip back in time to stop Hitler before he did anything evil. Of course there are a couple of problems. First is I’d be joining the back of a LOOONG queue. The other is that our friend Albert Einstein tells us it’s impossible.

But even if a time machine could be built, nobody’s really figured out what it entails. Here’s the deal.

The Horsehead nebula, Barnard 33, as seen by Hubble. Wonderful, wonderful imagery.

The Horsehead nebula, Barnard 33, as seen by Hubble. Wonderful, wonderful imagery.

Science fiction is rife with stories about time travel, variously either as social commentary, H. G. Wells style, or as cautionary tales – witness Ray Bradbury’s wonderful A Sound of Thunder. Invent a time machine, go back in time and change the past – and you’d better watch out.

Of course, if things change so you don’t exist, then you can’t have invented the time machine. Which means you didn’t go back in time. Therefore you do exist, so you did invent the time machine and… Yah.

Or there’s Harry Harrison’s hilarious Technicolour Time Machine, about a movie maker who uses a time machine to cut production costs on his period drama by going back to the actual period. What I’m getting at is that there’s a gaping great hole in all of this. And it’s an obvious one.

Suppose you COULD time travel. Suppose you’d built a machine to do it. You decide to whip back twelve hours. And promptly choke to death in the vacuum of deep space.

Nikolai Tesla with some of his gear in action. Public domain, from http://www.sciencebuzz.org/ blog/monument-nearly-forgotten-genius-sought

OK, so it’s not a time machine, but this is what one SHOULD look like. Nikolai Tesla, being spectacular with AC electricity (he’s reading a book, centre left). Public domain, from http://www.sciencebuzz.org/ blog/monument-nearly-forgotten-genius-sought

What gives? The problem is that everything in space is moving. Earth is rotating. Earth also moves around the Sun, which itself is orbiting the galaxy, which itself is moving as part of the Local Group, and so forth. We don’t notice or even think about it because we’re moving with the Earth. If we take Earth as our reference point, it’s fixed relative to us. And that leads us to imagine that  time machines are NOT moving through space – Wells, in particular, was quite explicit that his time machine was fixed and time moved around it.

But actually, a time machine that did this – that stayed ‘still’ relative to Earth would have to move through space, because Earth is moving.

Let’s reverse that for a moment. What say your time machine doesn’t move in space at all. You move back and forth through time, but your absolute spatial position is fixed. Not relative to Earth, but relative to the universe.

You leave your lab and leap back 12 hours. Earth won’t be there – it won’t have arrived. Leap forward 12 hours – same thing, only Earth’s moved away. If you’ve only moved a few seconds, you might find yourself plunging from a great height (aaaargh!). Or buried deep in the Earth (choke).

So for a compelling time-machine story you need to have a machine that not only travels anywhere in time, but also anywhere in space. And, of course, any relative dimensions associated with both. That’s right. A machine that travels anywhere through time and relative dimensions in space.

Heeeeeey, wait a minute

Copyright © Matthew Wright 2014

Click to buy from Fishpond.

Buy from Fishpond.

Click to buy from Fishpond

Buy from Fishpond

Click to buy e-book from Amazon

Buy e-book from Amazon

Kids books that have totally stuck with you

When you were a kid, did you ever find a book that, to this day, hasn’t gone away – that you could maybe read, years and years later, and still enjoy?

Here’s my list, all books I read up to the age of about 11-12. I’m not limiting it to a ‘top 10’ – in fact, some of the entries cover whole series of books. Justifiably.

  1. Arthur Ransome – the ‘Swallows and Amazons’ series
  2. C S Lewis – the ‘Narnia’ series
  3. Robert A. Heinlein – all his ‘juveniles’ (Farmer in the Sky, The Rolling Stones, Have Spacesuit, Will Travel, etc).
  4. Madeleine L’Engle – A Wrinkle In Time
  5. Tove Jansson – Finn Family Moomintroll
  6. J R R Tolkien – The Hobbit
  7. J R R Tolkien – The Lord of the Rings
  8. Nicholas Fisk – Space Hostages
  9. Norman Hunter – the whole Professor Branestawm series (my copies of the first three were autographed by the author himself, who came to my parents’ house in 1970).
  10. Arthur C. Clarke – Islands in the Sky (my main entree to Clarke, a YA-pitched showcase for his comsat future, and the first appearance of the ‘broomstick’ he also used 50 years later in 2010: Odyssey Two).
  11. Andre Norton – Plague Ship.

Care to share your list?

Copyright © Matthew Wright 2014

Close encounters of the meteor kind – this weekend

Back in 2013, I wrote a piece that mashed Pope Benedict’s resignation with the science of the meteorite that exploded over Russia. I was Freshly Pressed by WordPress on the back of it. Good stuff.

The fly-by. NASA, public domain. Click to enlarge.

The fly-by. NASA, public domain. Click to enlarge.

This weekend, a similarly sized chunk of space debris – about 20 metres in diameter – is rolling past Earth with closest approach of just 40,200 km, directly over New Zealand, at 6.18 am on Monday 8 September, NZT (18:18 Zulu, 7 September).

I use the word rolling deliberately. Everything spins in space.

The meteor’s called 20214 RC (R-C) and was detected only on 31 August by the Catalina Sky Survey at Tucson, Arizona. And that raises a point. The spectre of Earth being clobbered by even a modest piece of space detritus has haunted science for decades. Right now, we’re doing something about that – scanning near-Earth space in a hunt for likely impactors.

The orbit. NASA, public domain. Click to enlarge.

The orbit. NASA, public domain. Click to enlarge.

What we’d do if we found such a thing, other than despatch Bruce Willis, isn’t clear. Nuking them isn’t an option – the evidence is growing that some of these space rocks are just clumps of loose-ish ice and dirt. In any case, you’d end up with a cloud of debris, still hurtling for Earth and still able to deliver virtually the same kinetic blow to the planet. Personally I think we should splash one side of any likely impactor with black paint, but that method (which exploits asymmetric re-radiation of absorbed thermal energy) requires several years’ warning. This new encounter comes just a week after discovery – with all that this implies.

There’s no danger from 20214 RC (R-C). It’s got an orbital period of just over 541.11 days, which is different enough from Earth’s to mean there won’t be another encounter any time soon. But one day the orbital mechanics will mesh and it’ll be back in our vicinity. It won’t be an impact danger. But we don’t know what else is out there.

Yup, you’ve got it. That old sci-fi doom scenario involving a meteor suddenly sloshing the Atlantic into the US Eastern Seaboard and Europe? It’s baaaack…

Copyright © Matthew Wright 2014